
The Aedes aegypti mosquito is the primary vector of 
arboviruses such as dengue (DENV), Zika (ZIKV), 

chikungunya (CHIKV), and yellow fever. This mos-
quito species is common in urbanized areas in the 
tropics because it is highly adapted to live in close 
association with humans, preferentially feeding on 
blood of human hosts and laying eggs in containers 

located around human dwellings (1–6). Estimates in-
dicate that ≈3 billion persons live in areas with ongo-
ing DENV transmission (7).

Traditional entomologic surveillance for Ae. ae-
gypti mosquitoes is based on periodic inspections of 
larvae and pupae in domestic breeding sites, which 
provide measures of infestation known as the house 
index (HI), the percentage of houses in which >1 lar-
vae or pupae was collected, and Breteau index (BI), 
the number of containers positive for larvae or pupae 
divided by the number of inspected houses. By us-
ing available infestation data, public health managers 
intensify control strategies in the areas with higher 
indices. Of note, indices based on collection of imma-
ture mosquitoes face many criticisms because surveys 
are costly to perform with the frequency required for 
adequate surveillance; indices are highly dependent 
on the agent’s motivation to effectively search for lar-
vae in myriad container types, including cryptic and 
hard-to-access containers; surveys do not consider 
container productivity (i.e., these surveys might only 
provide measures of presence or absence immature 
mosquitoes); and larval density has proven to be a 
poor indicator of adult mosquito density (8–12).

Traps capturing adult mosquitoes could be a 
promising alternative to larval surveys because they 
sample the vector life stage that is directly responsi-
ble for transmission and provide qualitative (percent 
positive traps) and quantitative (number of captured 
mosquitoes per trap) indices (8,13–17). Adult traps 
provide relative measurements of the vector popula-
tion, expressed in units of mosquitoes by area, mos-
quitoes per person, or mosquitoes per trap (8,18,19). 
Therefore, adopting adult traps in an arbovirus- 
endemic setting likely would provide relevant infor-
mation regarding the spatiotemporal dynamics of  
Ae. aegypti mosquitoes.
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Arbovirus epidemiology lacks efficient and timely surveil-
lance systems with accurate outbreak alert signals. We 
devised a citywide integrated surveillance system com-
bining entomologic, epidemiologic, and entomo-virologic 
data gathered during 2017–2020 in Foz do Iguaçu, Bra-
zil. We installed 3,476 adult mosquito traps across the 
city and inspected traps every 2 months. We compared 
5 entomologic indices: traditional house and Breteau 
indices for larval surveys and trap positivity, adult den-
sity, and mosquitoes per inhabitant indices for adult trap-
ping. We screened for dengue, Zika, and chikungunya 
viruses in live adult Aedes aegypti mosquitoes collected 
from traps. Indices based on adult mosquito sampling 
had higher outbreak predictive values than larval indices, 
and we were able to build choropleth maps of infestation 
levels <36 h after each round of trap inspection. Locating 
naturally infected vectors provides a timely support tool 
for local public health managers to prioritize areas for 
intervention response to prevent virus outbreaks.
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Effective arbovirus surveillance should be able 
to accurately predict when and where an outbreak 
will occur. Routine virologic surveillance in field-
caught Ae. aegypti mosquitoes, (entomo-virologic 
surveillance) is one measure that could be adopted 
to enhance surveillance effectiveness (20). In DENV-
endemic settings of developing countries, screening 
for natural infection in field-caught Ae. aegypti mos-
quitoes has been performed in various situations but 
rarely as a component of a long-term routine surveil-
lance to direct control interventions to critical areas 
(21–23). By adding entomo-virologic surveillance to 
routine surveillance based on large-scale adult mos-
quito trapping across an entire city, health managers 
ideally would be able to identify hotspots of disease 
transmission and intensify vector control in those re-
gions before human cases arose (19,24).

We report on a 4-year integrated citywide vector 
surveillance approach that involved extensive use of 
adult mosquito traps, molecular diagnostic testing for 
natural arbovirus infection in live collected mosquito 
specimens, construction of transmission risk maps, 
and performance of timely vector control interven-
tion <48 h after mosquito collection. In this scheme, 
vector control was intensified in areas with higher 
risk for transmission instead of maintaining homo-
geneous vector control efforts over the landscape. In 
addition, we evaluated the correspondence of larval- 
and adult-based indices with the epidemiologic trend 
in the city of Foz do Iguaçu, Brazil, during 2017–2020.

Methods

Study Site
We implemented an entomo-virologic surveillance 
system in the city of Foz do Iguaçu (25°30′58″S, 
54°35′07″W), Brazil, which is located on the triple 
border with Argentina and Paraguay. Foz do Iguaçu 
has ≈250,000 inhabitants and an intense daily popu-
lation movement across the 3 countries’ border cit-
ies. Foz do Iguaçu is divided into 73 urban areas 
of ≈1,500 premises each (25), plus 3 rural areas that 
were not included in this study. We defined prem-
ises as a property occupied by a residence or a busi-
ness at ground level. According to the Brazil Minis-
try of Health, apartment buildings are not included, 
and surveillance and vector control interventions 
take place only at the foyer. The climate in Foz do 
Iguaçu is classified as humid tropical, according to 
the Köppen-Geiger system, and is characterized by 
hot and humid summers (mean temperature >27°C) 
and cold to mild winters (mean temperature <15°C), 
with an annual rainfall >1,850 mm.

Adult Mosquito Collection
During January 2017–December 2020, a total of 3,476 
Adultraps (Berdon, https://adultrap.com.br) were 
installed in the city, and 1 trap could be found in 
the peridomestic environment for every 25 prem-
ises. This system was originally designed to capture 
gravid Ae. aegypti female mosquitoes during ovipo-
sition because Adultraps use water as the principal 
attractant. These traps have an opening on the top 
where females enter, then are trapped in an interior 
chamber (16,26). Water remains confined in a com-
partment at the bottom of the trap that the mosqui-
toes cannot access, thus deterring egg laying. Local 
health agents visit all Adultraps every 2 months, 
within the first 4 days of the first week of odd 
months, when agents usually conduct larval surveys 
as part of traditional entomologic index. Therefore, 
during the study period, the 3,476 Adultraps were 
inspected 24 times in the same premises, a total of 
83,424 trap inspections.

Entomologic Indices
Besides the traditional HI and BI based on larval 
surveys, the Adultrap inspections produced 3 ento-
mologic indices based on adult collections. The trap 
positivity index (TPI) is the number of positive traps 
among the total number of traps inspected multiplied 
by 100; the adult density index (ADI) is the total num-
ber of Ae. aegypti mosquitoes captured divided by the 
total number of inspected traps multiplied by 100; 
and the mosquitoes per inhabitant index (MII) is the 
total number of adult Ae. aegypti mosquitoes collect-
ed, divided by the number of persons in each house 
with an Adultrap multiplied by 1,000. We calculated 
all entomologic indices every 2 months during 2017–
2020, a total of 24 observations per index.

Entomo-Virologic Screening
Mosquitoes collected alive during each 2-month 
period were sent to the entomology laboratory for 
further taxonomic identification by using appropri-
ate keys. Mosquitoes classified as Ae. aegypti were 
placed in cryogenic tubes for diagnosis of arbovirus 
infection by quantitative real-time PCR (qPCR). De-
pending on the number of mosquitoes captured in 
traps on the same city block, we pooled <10 mosqui-
toes per block, separating male from female mosqui-
toes. We calculated minimum infection rate (MIR) 
by dividing the number of positive pools by the total 
specimens tested, then multiplied by 1,000 (27). To 
estimate MIR, we used only data from DENV-posi-
tive pools because only a few pools were positive for 
ZIKV or CHIKV.
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RNA Extraction and Real-Time qPCR
We extracted viral RNA from Ae. aegypti mosquitoes 
by using the MagMAX Viral/Pathogen Nucleic Acid 
Ultra Isolation KIT (Applied Biosystems/Thermo 
Fisher Scientific, https://www.thermofisher.com), 
according to the manufacturer’s instructions. We 
added single or pooled mosquitoes to electromagnet-
ic mixing beads (MagMAX Viral/Pathogen Binding 
Beads; Applied Biosystems) and macerated by using 
TissueLyser II (QIAGEN, https://www.qiagen.com). 
After RNA extraction, we separated an aliquot of 2 µL 
from each sample and used this to read the concen-
tration of viral RNA recovered in a NanoDrop OneC 
Spectrophotometer (Thermo Fisher Scientific).

For arboviral genome amplification, we used 
the ZDC Biomol Kit (Instituto Biologia Molecular do 
Paraná [IBMP], https://www.ibmp.org.br) (28–31), 
which enables identification of ZIKV, CHIKV, and dif-
ferentiation of DENV serotypes with an internal con-
trol (IC) of the reaction that uses probes specific to each 
molecular target. We used a 96-well QuantStudio 7 
Flex Real-Time PCR System (Applied Biosystems) for 
PCR and analyzed results by using QuantStudioDe-
sign and Analysis Software versions 1.3.1 and 1.5.1 
(Applied Biosystems). We considered samples posi-
tive when the amplification plot curve exceeded the 
specific threshold for each target <35 cycle threshold.

Epidemiologic Surveillance and Case Report
The health system in Foz do Iguaçu is composed of 30 
basic health units, including 2 emergency care units, 
3 private hospitals, and 1 public hospital. The Min-
istry of Health lists dengue, Zika, and chikungunya 
as diseases of compulsory notification that can be 
registered in any of the local health facilities. Epide-
miologic surveillance for arboviruses is carried out 
passively after symptomatic persons seek care in the 
city health system. Zika and chikungunya cases were 
reported in the city before 2017, but no further large 
outbreaks were reported in Foz do Iguaçu. Thus, we 
restricted our analysis to suspected dengue cases re-
ported during 2017–2020 (25). A suspected dengue 
case was reported whenever any person residing 
in Foz do Iguaçu received a clinical diagnosis of >1 
compatible dengue symptom, including fever, head-
ache, myalgia, arthralgia, rash, nausea, retro-orbital 
pain, petechiae, or malaise, in the previous 14 days. 
Among suspected dengue cases, 33.2% were con-
firmed through laboratory diagnosis.

Geographic Information and Choropleth Maps
We recorded and stored all entomologic and epide-
miologic field-derived data, such as the location and  

trapping history of the 3,476 adult mosquito traps, 
along with geocoded residential address of suspected 
dengue patients, in a single database (25). We used 
PostgreSQL version 9.5.7 (instaclustr, https://www.in-
staclustr.com) for data storage and Quantum GIS ver-
sion 3.10.2 (QGIS, https://www.qgis.org) to produce 
maps. We used geoprocessed information and Power 
BI version 2.85.985.0 (Microsoft, https://powerbi.mi-
crosoft.com) to generate reports, graphs, and maps.

We created choropleth maps to help visualize the 
Ae. aegypti mosquito population among the 73 areas 
of the city. We built the choropleth maps in accor-
dance with guidelines provided by the Brazil Minis-
try of Health, which classifies HI <1.0 as a low risk for 
dengue transmission, HI from 1.1–4.0 as a moderate 
risk, and HI >4.0 a high risk.

Statistical Analysis
We evaluated the predictive ability of the entomologic 
indices by using 5 scenarios comprising comparison 
of dengue incidence (notifications per 100,000 inhabit-
ants) in the same week and in 2, 4, 6, and 8 weeks after 
the entomologic surveys. We assessed each scenario 
in each index by using generalized linear mixed mod-
els (GLMM) with temporal pseudoreplication (32). In 
these models, we included HI, BI, TPI, ADI, and MII 
as the fixed effect in the explanatory variable indices 
of larvae and adult mosquitoes, and the incidence 
of dengue as the response variable. The continuous 
random-effect structure included each resampling 
date with 23 levels in each of the 73 areas of Foz do 
Iguaçu (33). We assumed a Gaussian distribution for 
the continuous response variable and implemented 
the models in the lme4 package in R (R Foundation 
for Statistical Computing, https://www.r-project.
org). We obtained significance values for fixed effects 
in the ImerTest software package (R Foundation for 
Statistical Computing). We chose the best scenario by 
using Akaike information criteria (AIC) to rank mod-
els (ΔAICc), and calculated Akaike weights (wAICc) 
to evaluate the relative support of each model (34). 
We used ΔAICc to evaluate the differences in AIC 
score between the best model and the other models. 
We used Akaike weights to evaluate model selection 
uncertainty, which quantified the probability that the 
model was the best among those considered based 
on the data (34,35). We selected the best supported 
model based on rejection of GLMM null hypothesis 
(p<0.05), the lower AIC value, and an AIC weight >0.7 
(70% confidence set) (34). We considered models with 
ΔAICc of <4.0 to have no differences (36). We imple-
mented the ΔAICc and wAICc in the bbmle package 
(R Foundation for Statistical Computing).
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Results

Entomologic Survey of Larvae
In each 2-month period, an average of ≈4,883 (range 
4,781–5,021) premises were inspected, which corre-
spond to ≈6.25% of houses in Foz do Iguaçu. Dur-
ing 2017–2020, a range of 3.5%–17.7% of inspected 
Adultraps were positive for mosquitoes, and an 
average of 9.5% of traps had >1 Ae. aegypti mos-
quito. We used the number of positive houses to 
create HI and the number of containers to create 
BI and observed strong seasonal variation; values 
were 7 times higher during the wet summer (No-
vember–March) than in the dry winter (July–Sep-
tember) (Appendix 1, https://wwwnc.cdc.gov/
EID/article/28/4/21-1547-App1.xlsx). The aver-
age HI of Foz do Iguaçu was 2.58% during the 24 
observations of 2017–2020, and only twice was HI 
above the 4% alert level adopted by Ministry of 
Health, reaching 5.41% in March 2019 and 5.29% in  
May 2019.

We used the number of positive houses to es-
timate HI and number of positive breeding sites 
in each of larval survey to estimate traditional BI 
(Figure 1). Indices based on larval surveys showed 
an expected seasonal variation with higher values 
during the rainy summer (≈November–March), but 
HI and BI fluctuations were only partially in accor-
dance with the dengue notification curve (Figure 1).

Entomologic Survey for Adult Mosquitoes
Adult Aedes aegypti mosquitoes were collected on 
the same premises where larval surveys were per-
formed. The average number of inspected traps 
was 2,468 (range 2,239–2,767). Therefore, a mean 
of 73% of adult traps were inspected bimonthly. 
A total of 11,962 adult Ae. aegypti mosquitoes were 
captured in the adult traps, showing a massive pre-
dominance of female mosquitoes, 95.4% of all cap-
tured insects (Appendix 1).

In contrast to the indices based on larval surveys, 
indices based on adult capturing corresponded more 
closely to the dengue notification curve (Figure 2). 
Ultimately, we observed high infestation levels based 
on adult indices in Foz do Iguaçu that aligned with 
dengue notification.

Entomo-Virologic Survey
Of the 11,962 adult Ae. aegypti mosquitoes trapped 
during 2017–2020, a total of 1,563 (13.1%) were cap-
tured alive. In addition, 1,459 (93.3%) were screened 
for arbovirus infection through real-time qPCR. Sub-
sequently, mosquitoes were screened for infection in 
20/24 months of thorough monitoring that summed 
up 221 pools (Table 1). From the 221 pools tested, 29 
(13.1%) were positive for arboviruses, among which 
22 (75.9%) pools were positive for DENV, 3 (10.3%) 
for ZIKV, and 4 (13.8%) for CHIKV. The average 
MIR for DENV was 42.6 (range 19.6–75.0), and MIR 
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Figure 1. Bimonthly variation 
on traditional Aedes aegypti 
mosquito infestation indices 
based on larval surveys 
compared with number of 
reported dengue cases, Foz do 
Iguaçu, Brazil, 2017–2020. A) 
House index; B) Breteau index. 
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peaked in March 2020. The entomo-virologic results 
of natural DENV, ZIKV, and CHIKV infection in 
field-caught mosquitoes was available <36 hours af-
ter Adultrap inspection.

Dengue Prediction of Entomologic Indices
All entomologic indices based on adult sampling 
(TPI, ADI, and MII) showed a statistically significant 
relationship with dengue incidence in Foz do Iguaçu 
during 2017–2020 (Table 1). Indices based on larval 
surveys had limited statistically significant relation-
ships with dengue incidence in the same week for 

both BI and HI and for BI after 2 weeks. Of note, 
indices based on adult trapping best predicted the 
incidence of dengue after 4 weeks, with emphasis 
on ADI and MII (Table 1). Adult indices showed a 
stronger prediction of future dengue incidence than 
traditional larval surveys indices on the basis of 
GLMM results for each index in the 5 scenarios (Ap-
pendix 2 Tables 1–5, https://wwwnc.cdc.gov/EID/
article/28/4/21-1547-App2.pdf). Of note, coeffi-
cients for HI and BI were negative in most scenarios 
whereas positive coefficients were observed for TPI, 
ADI, and MII.
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Figure 2. Bimonthly variation 
on Aedes aegypti infestation 
indices based on surveys of adult 
mosquitoes captured compared 
with number of reported dengue 
cases, Foz do Iguaçu, Brazil, 
2017–2020. A) Trap positivity 
index; B) adult density index; C) 
mosquitoes per inhabitant index.
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Choropleth Maps
We constructed maps for the 5 entomologic indices in 
each of the 24 months of collection during 2017–2020. 
We selected January 2019 to illustrate the differences 
between maps based on larval surveys (HI) from the 
one using adult trapping (TPI), and considered HI 
and TPI analogous (Figure 3). Of note, January 2019 
marked the initial rise in dengue cases in the city, 
which peaked during March–May 2019, the moment 
in which a sensitive tool could foresee an increase in 
dengue transmission. In January 2019, HI classified 52 
(71.2%) areas as being low and moderate risk for den-
gue transmission, whereas TPI estimated 25 (34.2%) 
areas under the same risk. The relative frequency of 
high-risk areas before the start of a dengue outbreak 
increased from 28.7% when measured by HI to 65.8% 
when measured by TPI (Figure 3).

Discussion
Epidemiologic surveillance is defined as the system-
atic collection, analysis, and interpretation of deter-
minants of disease activity to support the planning 
and implementation of further actions to mitigate 
disease burden. Systematic literature reviews have 
stressed a general lack of evidence for the useful-
ness of arboviral surveillance for early outbreak de-
tection and emphasized the lack of indicators and 
alert signals to trigger response (37,38). When most 
arbovirus-endemic countries rely on passive surveil-
lance with clinical but few laboratory diagnostics to 
confirm infection, epidemiologic data frequently are 
not able to provide a sensitive alert signal before an 
outbreak takes place. We report on implementation 

of a citywide integrated surveillance system using 
entomologic, epidemiologic, and entomo-virologic 
data gathered during a 4-year period. The extensive 
fieldwork provided a large dataset and enabled ro-
bust analysis. The entomologic indices based on adult 
trapping provided a more reliable alert signal of den-
gue outbreaks than widespread traditional indices 
based on larval surveys.

Dengue entomologic surveillance using larval in-
spections is a time- and resource-consuming activity 
widely used in many tropical countries (8,10,39–42). 
Larval surveys can identify key containers but of-
ten fail to provide fast or localized measurements of 
mosquito abundance. In this context, adopting adult 
mosquito traps as a complementary approach can 
improve dengue vector surveillance by providing 
information previously unknown in larval surveys, 
such as adult female mosquito abundance (8,43,44). 
Traditional larval surveillance indices often fail to 
demonstrate a strong correlation with adult mos-
quito density and dengue transmission. Thus, devel-
oping other indices to serve as indicators of an im-
minent dengue outbreak should be encouraged (41). 
Of note, TPI, ADI, and MII were developed by using 
Adultrap and thus should not be seen as universal 
adult indices. Although specific for Adultrap, our 
results highlight that analogous approaches, such as 
extensive time series data, traditional entomologic 
data, and high cover in a city, should be pursued by 
using other traps (41).

Ultimately, even though 73 areas of the city were 
tested, the HI rarely reached values above the 4% 
alert threshold; the only exceptions were in March 
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Table. Akaike information criteria results ranking the most parsimonious a priori models (descending order) that predict the incidence 
of dengue cases based on surveys of Aedes aegypti mosquitoes, Foz do Iguaçu, Brazil* 
Scenarios Index ΔAICc wAICc 
After 4 weeks Mosquitoes per inhabitant 0.0 0.6079 
 Adult density 0.9 0.3908 
 Trap positivity 12.3 0.0013 
After 2 weeks Adult density 406.0 <0.001 
 Trap positivity 407.8 <0.001 
 Mosquitoes per inhabitant 407.8 <0.001 
 Breteau 426.4 <0.001 
After 6 weeks Mosquitoes per inhabitant 1,151.2 <0.001 
 Adult density 1,156.3 <0.001 
 Trap positivity 1,177.7 <0.001 
During the same week Adult density 2,146.8 <0.001 
 Mosquitoes per inhabitant 2,148.0 <0.001 
 Trap positivity 2,151.3 <0.001 
 House 2,159.7 <0.001 
 Breteau 2,161.1 <0.001 
After 8 weeks Adult density 2,286.3 <0.001 
 Mosquitoes per inhabitant 2,288.5 <0.001 
 Trap positivity 2,297.6 <0.001 
*Based on p≤0.05 in a generalized linear mixed model. Each model was denoted as a specific scenario, from the same week to 8 weeks after 
entomologic surveys, and index. House and Breteau indices are based on larval surveys of Aedes aegypti mosquitoes; mosquito per inhabitant, trap 
positivity, and adult density indices are based on adult trapping. ΔAICc, difference in corrected Akaiks information criteria; wAICc, weights of corrected 
Akaike information criteria. 
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2019 (5.41%) and May 2019 (5.29%). Furthermore, 
the most intense dengue transmission peak in Foz 
do Iguaçu was recorded during January–May 2020. 
In this window, we had 3 HI estimates, 3.21 in Janu-
ary, 1.32 in March, and 0.7 in May. We observed the 
same pattern of poor correlation with local dengue 
transmission for BI, evincing criticisms directed to 
larval surveys as both entomologic and epidemio-
logic indicators. Instead, indices based on adult 
trapping showed low variation during the nonen-
demic years of 2017–2018 and peaked accordingly in 
the 2019 and 2020 dengue seasons.

Standard larval surveys were not sufficient to is-
sue proper alerts in Foz do Iguaçu. By comparison, 
Adultraps detected increased mosquito infestation 
during the dengue transmission seasons, indicating 
the system’s ability to detect mosquito density varia-
tion and thus the likelihood of generating indices that 
could be used as part of an early warning system to 
trigger vector control response. The greater sensitivity 

of traps to mosquito density variation is probably be-
cause they can cover >1 premises, whereas surveys of 
immature mosquitoes only encompass those houses 
included in the sample (8).

Comparing the predictive ability of traditional 
versus adult indices revealed that indices based on 
adult trapping consistently performed much bet-
ter than indices based on larval surveys. In fact, we 
observed negative GLMM coefficients for HI and BI 
but saw positive estimates for indices based on adult 
trapping. In addition, MII, ADI, and TPI performed 
better as predictive indicators of dengue outbreaks 
4 weeks after the trapping period. Therefore, local 
health managers would have ≈1 month after estimat-
ing the index values to promote and intensify vector 
control in areas with higher risk on a choropleth map. 
In addition, health managers could create additional 
criteria to prioritize areas for vector control in case the 
cost to cover all high-risk areas of a city becomes too 
expensive to be covered by health agencies.
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Figure 3. Choropleth maps comparing larval and adult Aedes aegypti mosquito infestation indices and dengue notifications in 73 urban 
areas of Foz do Iguaçu, Brazil, January–February 2019. A) Traditional house index (HI) calculated from larval surveys; B) trap positivity 
index (TPI) calculated from dengue virus positivity among captured adult Ae. aegypti mosquitoes. Dots represent dengue notification 
and numbers inside dots represent the total of dengue cases reported on that city block.
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One criterion that could be used to prioritize areas 
is the occurrence of Ae. aegypti female mosquitoes natu-
rally infected with DENV, ZIKV, or CHIKV. In Foz do 
Iguaçu, inspection of the 3,476 Adultraps took 4 days, 
and real-time qPCR results were available, on average, 
36 h after all Adultraps were inspected and live mos-
quitoes collected. Thus, within 5 days of starting trap 
inspection, additional entomologic information, such 
as geographic position of traps, the infestation index, 
and the choropleth maps, were made available for lo-
cal health managers. In the early hours of the next busi-
ness day, the local health manager could meet with 
field supervisors to decide which area to prioritize and 
which vector control activities to perform considering 
local contexts (45,46). Therefore, a week after the start 
of Adultrap inspection, the dengue transmission risk 
among the 73 areas of Foz do Iguaçu would be known 
by the local health managers, triggering vector control 
interventions in prioritized areas.

In conclusion, traditional entomologic indices 
have shown a poor relationship with dengue transmis-
sion, if any (47–49). We conducted a 4-year citywide 
study to deepen the entomologic and epidemiologic 
features of dengue transmission in Foz do Iguaçu by 
focusing on developing indicators based on adult mos-
quito trapping. We demonstrated the process we used 
to develop the 3 adult trapping indices, all of which 
have a higher prediction behavior to foresee dengue 
outbreaks than the widely adopted traditional larval 
survey indices. Our proposed surveillance system can 
predict a dengue outbreak with high accuracy, and in-
dices based on adult trapping are able to predict a den-
gue outbreak 4 weeks after DENV detection in adult 
mosquitoes. In addition, adoption of easily accessible 
technological resources makes it possible for the model 
to be replicated to other localities.
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For many people, coronavirus disease (COVID-19) causes mild 
respiratory symptoms. Yet others die of from complications 

caused by the infection, and still others have no symptoms at 
all. How is this possible? What are the risk factors, and what 

role do they play in the development of disease?
In the pursuit to control this deadly pandemic,  

CDC scientists are investigating these questions and more.  
COVID-19 emerged less than 2 years ago. Yet in that  
short time, scientists have discovered  a huge body  

of knowledge on COVID-19. 
In this EID podcast, Dr. Kristen Pettrone, an Epidemic  

Intelligence Service officer at CDC, compares the  
characteristics of hospitalized and nonhospitalized  

patients with COVID-19 in Atlanta, Georgia.
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People with COVID-19 in and  

out of Hospitals, Atlanta, Georgia 
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Appendix 2 Table 1. Results of the generalized linear mixed models assessing the predictions of house index among Aedes 
aegypti mosquitoes on the incidence of dengue in 5 different scenarios, Foz do Iguaçu, Brazil, 2017–2020 
Scenarios Factor Estimate Standard error t value 
Same week Intercept 91.797 6.634 13.837* 
 House index −8.355 2.766 −3.021† 
After 2 weeks Intercept 59.240 3.985 14.867* 
 House index −3.178 1.648 −1.929 
After 4 weeks Intercept 49.3625 3.5937 13.736* 
 House index −0.9941 1.4752 −0.674 
After 6 weeks Intercept 55.9449 5.0541 11.069* 
 House index 0.2192 2.0948 0.105 
After 8 weeks Intercept 73.520 6.991 10.517* 

 House index 3.722 2.914 1.277 
*Statistically significant result, p<0.0001. 
†Statistically significant result, p<0.001. 

 
Appendix 2 Table 2. Results of the generalized linear mixed models assessing the predictions of Breteau index among Aedes 
aegypti mosquitoes on the incidence of dengue in 5 different scenarios, Foz do Iguaçu, Brazil, 2017–2020 
Scenarios Factor Estimate Standard error t value 
Same week Intercept 90.618 6.527 13.883* 
 Breteau index −6.485 2.271 −2.856† 
After 2 weeks Intercept 59.528 3.917 15.199* 
 Breteau index −2.762 1.353 −2.041‡ 
After 4 weeks Intercept 50.139 3.540 14.16* 
 Breteau index −1.455 1.212 0.23 
After 6 weeks Intercept 55.8899 4.9784 11.23* 
 Breteau index 0.2926 1.7220 0.865 
After 8 weeks Intercept 73.390 6.876 10.673* 

 Breteau index 3.092 2.395 0.197 
*Statistically significant result, p<0.0001. 
†Statistically significant result, p<0.001. 
‡Statistically significant result, p<0.05. 

 
Appendix 2 Table 3. Results of the generalized linear mixed models assessing the predictions of trap positivity index among Aedes 
aegypti mosquitoes on the incidence of dengue in 5 different scenarios, Foz do Iguaçu, Brazil, 2017–2020 
Scenarios Factor Estimate Standard error t value 
Same week Intercept 52.0100 8.4248 6.173* 
 Trap positivity index 3.1847 0.7066 4.507* 
After 2 weeks Intercept 35.7530 5.0457 7.086* 
 Trap positivity index 2.1327 0.4222 5.052* 
After 4 weeks Intercept 20.1856 4.5308 4.455* 
 Trap positivity index 2.8842 0.3768 7.654* 
After 6 weeks Intercept 13.4418 6.3652 2.112† 
 Trap positivity index 4.3620 0.5337 8.174* 
After 8 weeks Intercept 35.2194 8.8110 3.997* 
 Trap positivity index 4.7323 0.7384 6.409* 
*Statistically significant result, p<0.0001. 
†Statistically significant result, p<0.05. 
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Appendix 2 Table 4. Results of the generalized linear mixed models assessing the predictions of adult density index among Aedes 
aegypti mosquitoes on the incidence of dengue in 5 different scenarios, Foz do Iguaçu, Brazil, 2017–2020 
Scenarios Factor Estimate Standard error t value 
Same week Intercept 56.0966 7.2512 7.736* 
 Adult density index 1.3371 0.2571 5.201* 
After 2 weeks Intercept 40.8019 4.3460 9.388* 
 Adult density index 0.8314 0.1536 5.411* 
After 4 weeks Intercept 25.3389 3.9251 6.456* 
 Adult density index 1.1704 0.1374 8.519* 
After 6 weeks Intercept 19.2142 5.4924 3.498* 
 Adult density index 1.8589 0.1943 9.568* 
After 8 weeks Intercept 42.0809 7.5616 5.565* 

 Adult density index 1.9786 0.2681 7.381* 
*Statistically significant result, p<0.0001. 

 
Appendix 2 Table 5. Results of the generalized linear mixed models assessing the predictions of mosquitoes per inhabitant index 
for the incidence of dengue cases in 5 different scenarios, Foz do Iguaçu, Brazil, 2017–2020 
Scenarios Factor Estimate Standard error t value 
Same week Intercept 56.4221 7.1622 7.878* 
 Mosquitoes per inhabitant index 0.4333 0.0818 5.297* 
After 2 weeks Intercept 40.94 4.301 9.519* 
 Mosquitoes per inhabitant index 0.2670 0.0489 5.460* 
After 4 weeks Intercept 25.34 3.886 6.522* 
 Mosquitoes per inhabitant index 0.3801 0.04362 8.715* 
After 6 weeks Intercept 18.32 5.437 3.369* 
 Mosquitoes per inhabitant index 0.6147 0.06159 9.979* 
After 8 weeks Intercept 33.61 7.623 4.409* 
 Mosquitoes per inhabitant index 0.6743 0.08522 7.913* 
*Statistically significant result, p<0.0001. 

 


